当前位置 博文首页 > Datawhale练习之二手车价格预测

    Datawhale练习之二手车价格预测

    作者:weixin_42143139 时间:2021-07-03 18:40

    目录
    • 1. 总览数据概况
      • 1.1 判断数据缺失和异常
        • 1.1.1 查看nan
        • 1.1.2 *异常值检测(重要!易忽略)
      • 1.2 了解预测值的分布
        • 1.2.1 数字特征分析
        • 1.2.2 类别特征分析(会画,不会利用结果)
    • 2. *用pandas_profiling生成数据报告(新技能)
      • 3. 小结

        数据探索性分析(EDA)

        1. 总览数据概况

        数据库载入

        #coding:utf-8
        #导入warnings包,利用过滤器来实现忽略警告语句。
        import warnings
        warnings.filterwarnings('ignore')
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import missingno as msno
        

        数据载入

        ## 1) 载入训练集和测试集;
        path = './'
        Train_data = pd.read_csv(path+'car_train_0110.csv', sep=' ')
        Test_data = pd.read_csv(path+'car_testA_0110.csv', sep=' ')
        

        确定path,如果是在notebook环境,我通常使用 !dir查看当前目录

        在这里插入图片描述

        特征说明

        在这里插入图片描述

        新技能:使用.append()同时观察前5行与后5行

        ## 2) 简略观察数据(head()+shape)
        Train_data.head().append(Train_data.tail())

        在这里插入图片描述

        观察数据维度

        Train_data.shape,Test_data.shape

        在这里插入图片描述

        总览概况: .describe()查看统计量,.info()查看数据类型

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        1.1 判断数据缺失和异常

        1.1.1 查看nan

        Train_data.shape,Test_data.shape

        在这里插入图片描述

        也可直接查看nan,有以下两种方式 ↓ :

        Train_data.isnull().sum()

        在这里插入图片描述

        可视化na更直观

        # find na 
        tmp = df_train.isnull().any()
        tmp[tmp.values==True]

        在这里插入图片描述

        新技能: msno库(缺失值可视化)的使用

        Train_data.isnull().sum().plot( kind= 'bar')

        在这里插入图片描述

        可视化看下缺省值

        msno.matrix(Train_data.sample(250))

        其中,Train_data.sample(250)表示随机抽样250行,白色条纹表示缺失

        在这里插入图片描述

        直接显示未缺失的样本数量/每特征

        msno.bar(Train_data.sample(250),labels= True)

        在这里插入图片描述

        使用msno中的 .heatmap()查看缺失值之间的相关性

        msno.heatmap(Train_data.sample(250))

        在这里插入图片描述

        1.1.2 *异常值检测(重要!易忽略)

        通过Train_data.info()了解数据类型

        Train_data.info()

        1.2 了解预测值的分布

        特征分为类别特征和数字特征

        查看分布的意义在于:

        a. 及时将非正态分布数据变化为正态分布数据

        b. 异常检测

        1.2.1 数字特征分析

        Train_data['price']

        发现都是int

        在这里插入图片描述

        统计分布 ↓

        Train_data['price'].value_counts()

        在这里插入图片描述

        ## 1) 总体分布概况(无界约翰逊分布等)
        import scipy.stats as st
        y = Train_data['price']
        plt.figure(1); plt.title('Johnson SU')
        sns.distplot(y, kde=False, fit=st.johnsonsu)
        plt.figure(2); plt.title('Normal')
        sns.distplot(y, kde=False, fit=st.norm)
        plt.figure(3); plt.title('Log Normal')
        sns.distplot(y, kde=False, fit=st.lognorm)
        

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        结论:price不服从正态分布,因此在进行回归之前,它必须进行转换。无界约翰逊分布拟合效果较好。

        1.2.1.1 相关性分析
        1.2.1.2 *偏度和峰值

        偏度(skewness),统计数据分布偏斜方向和程度,是统计数据分布非对称程度的数字特征。定义上偏度是样本的三阶标准化矩。

        在这里插入图片描述

        峰度(peakedness;kurtosis)又称峰态系数。表征概率密度分布曲线在平均值处峰值高低的特征数。直观看来,峰度反映了峰部的尖度。

        在这里插入图片描述

        ## 2) 查看skewness and kurtosis
        sns.distplot(Train_data['price']);
        print("Skewness: %f" % Train_data['price'].skew())
        print("Kurtosis: %f" % Train_data['price'].kurt())
        

        在这里插入图片描述

        批量计算skew

        Train_data.skew()

        在这里插入图片描述

        查看skew的分布情况

        在这里插入图片描述

        批量计算kurt

        Train_data.kurt()

        在这里插入图片描述

        查看kurt的分布情况

        在这里插入图片描述

        查看目标变量的分布

        ## 3) 查看预测值的具体频数
        plt.hist(Train_data['price'], orientation = 'vertical',histtype = 'bar', color ='red')
        plt.show()

        在这里插入图片描述

        结论:大于20000得值极少,其实这里也可以把这些当作特殊得值(异常值)直接用填充或者删掉

        由于np.log(0)==-inf,无法绘图,因此改用log(1+x)绘制分布bar,和教程里有出入,教程里用log绘图如下:(我画不出来,因为-inf会报错)

        在这里插入图片描述

        # log变换之后的分布较均匀,可以进行log变换进行预测,这也是预测问题常用的trick
        plt.hist(np.log(1+Train_data['price']), orientation = 'vertical',histtype = 'bar', color ='red') 
        plt.show()
        

        在这里插入图片描述

        分离label即预测值

        Y_train = Train_data['price']

        #这个区别方式适用于没有直接label coding的数据

        #这里不适用,需要人为根据实际含义来区分

        #数字特征

        numeric_features = Train_data.select_dtypes(include=[np.number])

        numeric_features.columns

        #类型特征

        categorical_features = Train_data.select_dtypes(include=[np.object])

        categorical_features.columns

        numeric_features = ['power', 'kilometer', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13','v_14' ]
        categorical_features = ['name', 'model', 'brand', 'bodyType', 'fuelType', 'gearbox', 'notRepairedDamage', 'regionCode',]
        
        # 特征nunique分布
        for cat_fea in categorical_features:
            print(cat_fea + "的特征分布如下:")
            print("{}特征有个{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))
            print(Train_data[cat_fea].value_counts())
        

        每个特征情况都会逐个如下所示:

        在这里插入图片描述

        test data显示同理

        numeric_features.append('price')
        numeric_features

        在这里插入图片描述

        price_numeric = Train_data[numeric_features]
        correlation = price_numeric.corr()
        correlation

        只截了一部分

        在这里插入图片描述

        查看相关性(强->弱)

        print(correlation['price'].sort_values(ascending = False),'\n')

        在这里插入图片描述

        可视化correction

        f , ax = plt.subplots(figsize = (7, 7))
        plt.title('Correlation of Numeric Features with Price',y=1,size=16)
        sns.heatmap(correlation,square = True,  vmax=0.8)
        

        在这里插入图片描述

        price完成历史使命,删掉

        del price_numeric['price']
        ## 2) 查看几个特征得 偏度和峰值
        for col in numeric_features:
            print('{:15}'.format(col), 
                  'Skewness: {:05.2f}'.format(Train_data[col].skew()) , 
                  '   ' ,
                  'Kurtosis: {:06.2f}'.format(Train_data[col].kurt())  
                 )
        

        在这里插入图片描述

        1.2.1.3 *每个数字特征的分布可视化(易忽略)
        ## 3) 每个数字特征得分布可视化
        f = pd.melt(Train_data, value_vars=numeric_features)
        g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)
        g = g.map(sns.distplot, "value")
        

        只截了部分:

        在这里插入图片描述

        在这里插入图片描述

        结论:匿名特征(v_*)相对分布均匀

        1.2.1.4 *数字特征相互之间的关系可视化(易忽略)
        ## 4) 数字特征相互之间的关系可视化
        sns.set()
        columns = ['price', 'v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
        sns.pairplot(Train_data[columns],size = 2 ,kind ='scatter',diag_kind='kde')
        plt.show()
        
        1.2.1.5 *多变量互相回归关系可视化(易忽略)
        ## 5) 多变量互相回归关系可视化
        fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)) = plt.subplots(nrows=5, ncols=2, figsize=(24, 20))
        # ['v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
        v_12_scatter_plot = pd.concat([Y_train,Train_data['v_12']],axis = 1)
        sns.regplot(x='v_12',y = 'price', data = v_12_scatter_plot,scatter= True, fit_reg=True, ax=ax1)
        v_8_scatter_plot = pd.concat([Y_train,Train_data['v_8']],axis = 1)
        sns.regplot(x='v_8',y = 'price',data = v_8_scatter_plot,scatter= True, fit_reg=True, ax=ax2)
        v_0_scatter_plot = pd.concat([Y_train,Train_data['v_0']],axis = 1)
        sns.regplot(x='v_0',y = 'price',data = v_0_scatter_plot,scatter= True, fit_reg=True, ax=ax3)
        power_scatter_plot = pd.concat([Y_train,Train_data['power']],axis = 1)
        sns.regplot(x='power',y = 'price',data = power_scatter_plot,scatter= True, fit_reg=True, ax=ax4)
        v_5_scatter_plot = pd.concat([Y_train,Train_data['v_5']],axis = 1)
        sns.regplot(x='v_5',y = 'price',data = v_5_scatter_plot,scatter= True, fit_reg=True, ax=ax5)
        v_2_scatter_plot = pd.concat([Y_train,Train_data['v_2']],axis = 1)
        sns.regplot(x='v_2',y = 'price',data = v_2_scatter_plot,scatter= True, fit_reg=True, ax=ax6)
        v_6_scatter_plot = pd.concat([Y_train,Train_data['v_6']],axis = 1)
        sns.regplot(x='v_6',y = 'price',data = v_6_scatter_plot,scatter= True, fit_reg=True, ax=ax7)
        v_1_scatter_plot = pd.concat([Y_train,Train_data['v_1']],axis = 1)
        sns.regplot(x='v_1',y = 'price',data = v_1_scatter_plot,scatter= True, fit_reg=True, ax=ax8)
        v_14_scatter_plot = pd.concat([Y_train,Train_data['v_14']],axis = 1)
        sns.regplot(x='v_14',y = 'price',data = v_14_scatter_plot,scatter= True, fit_reg=True, ax=ax9)
        v_13_scatter_plot = pd.concat([Y_train,Train_data['v_13']],axis = 1)
        sns.regplot(x='v_13',y = 'price',data = v_13_scatter_plot,scatter= True, fit_reg=True, ax=ax10)
        

        1.2.2 类别特征分析(会画,不会利用结果)

        对类别特征查看unique分布

        .value_counts()
        ## 1) unique分布
        for fea in categorical_features:
            print(Train_data[fea].nunique())
        categorical_features
        1.2.2.1 箱形图可视化
        ## 2) 类别特征箱形图可视化
        # 因为 name和 regionCode的类别太稀疏了,这里我们把不稀疏的几类画一下
        categorical_features = ['model',
         'brand',
         'bodyType',
         'fuelType',
         'gearbox',
         'notRepairedDamage']
        for c in categorical_features:
            Train_data[c] = Train_data[c].astype('category')
            if Train_data[c].isnull().any():
                Train_data[c] = Train_data[c].cat.add_categories(['MISSING'])
                Train_data[c] = Train_data[c].fillna('MISSING')
        def boxplot(x, y, **kwargs):
            sns.boxplot(x=x, y=y)
            x=plt.xticks(rotation=90)
        f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
        g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
        g = g.map(boxplot, "value", "price")
        
        Train_data.columns
        1.2.2.2 小提琴图可视化
        ## 3) 类别特征的小提琴图可视化
        catg_list = categorical_features
        target = 'price'
        for catg in catg_list :
            sns.violinplot(x=catg, y=target, data=Train_data)
            plt.show()
        
        categorical_features = ['model',
         'brand',
         'bodyType',
         'fuelType',
         'gearbox',
         'notRepairedDamage']

        1.2.2.3 柱形图可视化类别

        ## 4) 类别特征的柱形图可视化
        def bar_plot(x, y, **kwargs):
            sns.barplot(x=x, y=y)
            x=plt.xticks(rotation=90)
        f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
        g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
        g = g.map(bar_plot, "value", "price")
        

        1.2.2.4 特征的每个类别频数可视化(count_plot)

        ##  5) 类别特征的每个类别频数可视化(count_plot)
        def count_plot(x,  **kwargs):
            sns.countplot(x=x)
            x=plt.xticks(rotation=90)
        f = pd.melt(Train_data,  value_vars=categorical_features)
        g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
        g = g.map(count_plot, "value")
        

        2. *用pandas_profiling生成数据报告(新技能)

        import pandas_profiling
        pfr = pandas_profiling.ProfileReport(Train_data)
        pfr.to_file("./example.html")

        3. 小结

        本次笔记虽然针对样本量较少的情况,但仍有一些可贵的思路:

        a. 通过检查nan缺失情况,确定需要进一步处理的特征:

        填充(填充方式是什么,均值填充,0填充,众数填充等);

        舍去;

        先做样本分类用不同的特征模型去预测

        b. 通过分布,进行异常检测

        分析特征异常的label是否异常(或者偏离均值较远或者事特殊符号);

        异常值是否应该剔除,还是用正常值填充,等。

        c. 通过对laebl作图,分析标签的分布情况

        d. 通过对特征作图,特征和label联合做图(统计图,离散图),直观了解特征的分布情况,通过这一步也可以发现数据之中的一些异常值等,通过箱型图分析一些特征值的偏离情况,对于特征和特征联合作图,对于特征和label联合作图,分析其中的一些关联性

        jsjbwy
        下一篇:没有了