当前位置 博文首页 > DL_fan的博客:CenterNet:Objects as Points

    DL_fan的博客:CenterNet:Objects as Points

    作者:[db:作者] 时间:2021-07-10 22:23

    CenterNet论文链接

    一.背景

    1.anchor-base缺点         

    (1).anchor的设置对结果影响很大,不同项目这些超参都需要根据经验来确定,难度较大.

    (2).anchor太过密集,其中很多是负样本,引入了不平衡.

    (3).anchor的计算涉及IOU增加计算复杂度.

    2.应用场景

    (1).目标检测

    (2).3D定位

    (3).人体姿态估计

    二.网络介绍

    输出分支主要由三部分组成

    (1)heatmap,大小为(W/4,H/4,C),输出不同类别的物体中心点

    (2)offset,大小为(W/4,H/4,2)输出中心点偏移

    (3)Height&Weight大小为(W/4,H/4,2),输出中心点检测框的宽高

    1.思想

    通过预测出目标的heatmap,找出heatmap的峰值就是目标的中心点.

    heatmap高斯核半径制作参考这篇文章,和这篇文章。

    代码:

    
    import numpy as np
    np.set_printoptions(suppress=True)#设置小数显示
    
    def gaussian_radius(det_size, min_overlap=0.7):
        box_w, box_h = det_size
        a1 = 1
        b1 = (box_w + box_h)
        c1 = box_w * box_h * (1 - min_overlap) / (1 + min_overlap)
        sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1)
        r1 = (b1 + sq1) /2# (2*a1) # (2*a1)
    
        a2 = 4
        b2 = 2 * (box_w + box_h)
        c2 = (1 - min_overlap) * box_w * box_h
        sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2)
        r2 = (b2 + sq2) / 2# (2*a2)  # (2*a2)
    
        a3 = 4 * min_overlap
        b3 = -2 * min_overlap * (box_w + box_h)
        c3 = (min_overlap - 1) * box_w * box_h
        sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3)
        print('==b3 + sq3:', b3 + sq3)
        print('====a3:===', a3)
        r3 = (b3 + sq3) / 2#(2*a3)  # (2*a3)
        print('==r1, r2, r3:', r1, r2, r3)
        return min(r1, r2, r3)
    
    gt_numpy = np.zeros((512 // 4, 512 // 4, 3)).astype(np.float32)
    box_w_s, box_h_s = 100 / 4, 80 / 4
    r = gaussian_radius([box_w_s, box_h_s])
    sigma_w = sigma_h = r / 3
    # create Gauss heatmap
    print('===sigma_w:', sigma_w)
    ws = 512 / 4
    hs = 512 / 4
    grid_x = 64
    grid_y = 64
    gt_cls = 0
    gt_numpy[grid_y, grid_x, gt_cls] = 1
    for i in range(grid_x - 3 * int(sigma_w), grid_x + 3 * int(sigma_w) + 1):
        for j in range(grid_y - 3 * int(sigma_h), grid_y + 3 * int(sigma_h) + 1):
            if i < ws and j < hs:
                v = np.exp(
                    - (i - grid_x) ** 2 / (2 * sigma_w ** 2) - (j - grid_y) ** 2 / (2 * sigma_h ** 2))
                pre_v = gt_numpy[j, i, int(gt_cls)]
                gt_numpy[j, i, 0] = max(v, pre_v)
    print('===gt_numpy.shape:', gt_numpy.shape)
    
    middle_gt = gt_numpy[(64 - 3 * int(sigma_h)):(64 + 3*int(sigma_h) + 1),
                 (64 - 3 * int(sigma_w)):(64 + 3 * int(sigma_w)+1), 0]
    print(type(middle_gt))
    print(np.around(middle_gt, 2))
    out_img = gt_numpy[..., 0]*255.
    cv2.imwrite('./out_img.jpg', out_img)
    import cv2
    warped_color = cv2.applyColorMap(out_img.astype(np.uint8), cv2.COLORMAP_JET)
    cv2.imwrite('./out_img_color.jpg', warped_color)
    

    ? ?

    2.与anchor based区别

    (1).不需要阈值区分前后景;

    (2).一个目标只需要一个heatmap,避免使用nms,heatmap的峰值就是目标中心点;

    (3).下采样步长小只是4,减少了需要多个重复框.

    3.heatmap和相应focal loss(分类)

    heatmap就是目标的热力图,通道数就是类别数,loss采用focal loss,其按照高斯分布来进行分配,因为除了中心点的heatmap其实没必要完全贡献loss.

    ?xyc:每个通道预测的heatmap,(x,y)处的值.

    Yxyc:每个通道的gt heatmap,(x,y)处的值,服从高斯分布.

    α,β: 超参用来控制loss.

    N:图片所有的关键点.

    pytorch代码示例:

    
    import torch
    
    def modified_focal_loss(pred, gt, alpha, beta):
        """
        focal loss copied from CenterNet, modified version focal loss
        change log: numeric stable version implementation
        """
        pos_inds = gt.eq(1).float()
        neg_inds = gt.lt(1).float()
    
        neg_weights = torch.pow(1 - gt, beta)
        # clamp min value is set to 1e-12 to maintain the numerical stability
        pred = torch.clamp(pred, 1e-12)
    
        pos_loss = torch.log(pred) * torch.pow(1 - pred, alpha) * pos_inds
        neg_loss = torch.log(1 - pred) * torch.pow(pred, alpha) * neg_weights * neg_inds
    
        num_pos = pos_inds.float().sum()
        pos_loss = pos_loss.sum()
        neg_loss = neg_loss.sum()
        print('===num_pos:', num_pos)
        if num_pos == 0:
            loss = -neg_loss
        else:
            loss = -(pos_loss + neg_loss) / num_pos
        # print(f'num_pos {num_pos},pos_loss {pos_loss},neg_loss {neg_loss}')
        return loss
    
    
    if __name__ == '__main__':
        b, c, h, w = 4, 10, 224, 224
        pred = torch.rand(b, c, h, w)
    
        b, c, h, w = 4, 10, 224, 224
        gt = torch.clamp(torch.rand(b, c, h, w)+0.1, 0., 1.0)
    
        print('==pred.shape:', pred.shape)
        print('==gt.shape:', gt.shape)
        loss = modified_focal_loss(pred, gt, alpha=2, beta=4)
        print('=loss:', loss)

    4.offset loss(L1)

    用offests来矫正下采样造成的检测框偏移,从而让检测框更加紧凑.

    ? ?p是key point,R是下采样倍数,这里从预测图的heatmap恢复到原图就会有精度损失,严重影响小物体,所以就通过一个网络分支去学习这种误差.

    5.回归loss(L1)

    采用L1 loss回归宽高

    6.总loss

    loss由三部分组成:heatmap分类loss,回归宽高loss,回归偏移loss.

    输出类别数+4(宽高,中心点偏移).

    7.推理

    在heatmap上通过8近邻取得前100个峰值,在对8近邻的点3*3 maxpooling获得中心点,在与预测的宽高,偏移量组合就得出检测框.

    :预测的中心点

    :预测的中心点偏移量

    :预测宽高

    ?

    三.实验结果

    cs
    下一篇:没有了