当前位置 博文首页 > 教你怎么用python删除相似度高的图片

    教你怎么用python删除相似度高的图片

    作者:DJames23 时间:2021-06-10 17:44

    1. 前言

    因为输入是视频,切完帧之后都是连续图片,所以我的目录结构如下:

    在这里插入图片描述

    其中frame_output是视频切帧后的保存路径,1和2文件夹分别对应两个是视频切帧后的图片。

    2. 切帧代码如下:

    #encoding:utf-8
    import os
    import sys
    import cv2
    
    video_path = '/home/pythonfile/video/'  # 绝对路径,video下有两段视频
    out_frame_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'frame_output')  #frame_output是视频切帧后的保存路径
    if not os.path.exists(out_frame_path):
        os.makedirs(out_frame_path)
    print('out_frame_path', out_frame_path)
    files = []
    list1 = os.listdir(video_path)
    print('list', list1)
    for i in range(len(list1)):
        item = os.path.join(video_path, list1[i])
        files.append(item)
    print('files',files)
    for k,file in enumerate(files):
        frame_dir = os.path.join(out_frame_path, '%d'%(k+1))
        if not os.path.exists(frame_dir):
            os.makedirs(frame_dir)
        cap = cv2.VideoCapture(file)
        j = 0
        print('start prossing NO.%d video' % (k + 1))
        while True:
            ret, frame = cap.read()
            j += 1
            if ret:
            #每三帧保存一张
                if j % 3 == 0:
                    cv2.imwrite(os.path.join(frame_dir, '%d.jpg'%j), frame)
            else:
                cap.release()
                break
        print('prossed NO.%d video'%(k+1))
    
    

    3. 删除相似度高的图片

    # coding: utf-8
    import os
    import cv2
    # from skimage.measure import compare_ssim
    # from skimage.metrics import _structural_similarity
    from skimage.metrics import structural_similarity as ssim
    
    def delete(filename1):
        os.remove(filename1)
    
    
    def list_all_files(root):
        files = []
        list = os.listdir(root)
        # os.listdir()方法:返回指定文件夹包含的文件或子文件夹名字的列表。该列表顺序以字母排序
        for i in range(len(list)):
            element = os.path.join(root, list[i])
            # 需要先使用python路径拼接os.path.join()函数,将os.listdir()返回的名称拼接成文件或目录的绝对路径再传入os.path.isdir()和os.path.isfile().
            if os.path.isdir(element):  # os.path.isdir()用于判断某一对象(需提供绝对路径)是否为目录
                # temp_dir = os.path.split(element)[-1]
                # os.path.split分割文件名与路径,分割为data_dir和此路径下的文件名,[-1]表示只取data_dir下的文件名
                files.append(list_all_files(element))
    
            elif os.path.isfile(element):
                files.append(element)
        # print('2',files)
        return files
    
    
    def ssim_compare(img_files):
        count = 0
        for currIndex, filename in enumerate(img_files):
            if not os.path.exists(img_files[currIndex]):
                print('not exist', img_files[currIndex])
                break
            img = cv2.imread(img_files[currIndex])
            img1 = cv2.imread(img_files[currIndex + 1])
            #进行结构性相似度判断
            # ssim_value = _structural_similarity.structural_similarity(img,img1,multichannel=True)
            ssim_value = ssim(img,img1,multichannel=True)
            if ssim_value > 0.9:
                #基数
                count += 1
                imgs_n.append(img_files[currIndex + 1])
                print('big_ssim:',img_files[currIndex], img_files[currIndex + 1], ssim_value)
            # 避免数组越界
            if currIndex+1 >= len(img_files)-1:
                break
        return count
    
    
    if __name__ == '__main__':
        path = '/home/dj/pythonfile/frame_output/'
    
        img_path = path
        imgs_n = []
       
        all_files = list_all_files(path) #返回包含完整路径的所有图片名的列表
        print('1',len(all_files))
       
        for files in all_files:
            # 根据文件名排序,x.rfind('/')是从右边寻找第一个‘/'出现的位置,也就是最后出现的位置
            # 注意sort和sorted的区别,sort作用于原列表,sorted生成新的列表,且sorted可以作用于所有可迭代对象
            files.sort(key = lambda x: int(x[x.rfind('/')+1:-4]))#路径中包含“/”
            # print(files)
            img_files = []
            for img in files:
                if img.endswith('.jpg'):
                    # 将所有图片名都放入列表中
                    img_files.append(img)
            count = ssim_compare(img_files)
            print(img[:img.rfind('/')],"路径下删除的图片数量为:",count)
        for image in imgs_n:
            delete(image)
    

    4. 导入skimage.measure import compare_ssim出错的解决方法:

    from skimage.measure import compare_ssim

    改为

    from skimage.metrics import _structural_similarity

    5. structural_similarity.py的源码

    from warnings import warn
    import numpy as np
    from scipy.ndimage import uniform_filter, gaussian_filter
    
    from ..util.dtype import dtype_range
    from ..util.arraycrop import crop
    from .._shared.utils import warn, check_shape_equality
    
    __all__ = ['structural_similarity']
    
    
    def structural_similarity(im1, im2,
                              *,
                              win_size=None, gradient=False, data_range=None,
                              multichannel=False, gaussian_weights=False,
                              full=False, **kwargs):
        """
        Compute the mean structural similarity index between two images.
    
        Parameters
        ----------
        im1, im2 : ndarray
            Images. Any dimensionality with same shape.
        win_size : int or None, optional
            The side-length of the sliding window used in comparison. Must be an
            odd value. If `gaussian_weights` is True, this is ignored and the
            window size will depend on `sigma`.
        gradient : bool, optional
            If True, also return the gradient with respect to im2.
        data_range : float, optional
            The data range of the input image (distance between minimum and
            maximum possible values). By default, this is estimated from the image
            data-type.
        multichannel : bool, optional
            If True, treat the last dimension of the array as channels. Similarity
            calculations are done independently for each channel then averaged.
        gaussian_weights : bool, optional
            If True, each patch has its mean and variance spatially weighted by a
            normalized Gaussian kernel of width sigma=1.5.
        full : bool, optional
            If True, also return the full structural similarity image.
    
        Other Parameters
        ----------------
        use_sample_covariance : bool
            If True, normalize covariances by N-1 rather than, N where N is the
            number of pixels within the sliding window.
        K1 : float
            Algorithm parameter, K1 (small constant, see [1]_).
        K2 : float
            Algorithm parameter, K2 (small constant, see [1]_).
        sigma : float
            Standard deviation for the Gaussian when `gaussian_weights` is True.
    
        Returns
        -------
        mssim : float
            The mean structural similarity index over the image.
        grad : ndarray
            The gradient of the structural similarity between im1 and im2 [2]_.
            This is only returned if `gradient` is set to True.
        S : ndarray
            The full SSIM image.  This is only returned if `full` is set to True.
    
        Notes
        -----
        To match the implementation of Wang et. al. [1]_, set `gaussian_weights`
        to True, `sigma` to 1.5, and `use_sample_covariance` to False.
    
        .. versionchanged:: 0.16
            This function was renamed from ``skimage.measure.compare_ssim`` to
            ``skimage.metrics.structural_similarity``.
    
        References
        ----------
        .. [1] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P.
           (2004). Image quality assessment: From error visibility to
           structural similarity. IEEE Transactions on Image Processing,
           13, 600-612.
           https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf,
           :DOI:`10.1109/TIP.2003.819861`
    
        .. [2] Avanaki, A. N. (2009). Exact global histogram specification
           optimized for structural similarity. Optical Review, 16, 613-621.
           :arxiv:`0901.0065`
           :DOI:`10.1007/s10043-009-0119-z`
    
        """
        check_shape_equality(im1, im2)
    
        if multichannel:
            # loop over channels
            args = dict(win_size=win_size,
                        gradient=gradient,
                        data_range=data_range,
                        multichannel=False,
                        gaussian_weights=gaussian_weights,
                        full=full)
            args.update(kwargs)
            nch = im1.shape[-1]
            mssim = np.empty(nch)
            if gradient:
                G = np.empty(im1.shape)
            if full:
                S = np.empty(im1.shape)
            for ch in range(nch):
                ch_result = structural_similarity(im1[..., ch],
                                                  im2[..., ch], **args)
                if gradient and full:
                    mssim[..., ch], G[..., ch], S[..., ch] = ch_result
                elif gradient:
                    mssim[..., ch], G[..., ch] = ch_result
                elif full:
                    mssim[..., ch], S[..., ch] = ch_result
                else:
                    mssim[..., ch] = ch_result
            mssim = mssim.mean()
            if gradient and full:
                return mssim, G, S
            elif gradient:
                return mssim, G
            elif full:
                return mssim, S
            else:
                return mssim
    
        K1 = kwargs.pop('K1', 0.01)
        K2 = kwargs.pop('K2', 0.03)
        sigma = kwargs.pop('sigma', 1.5)
        if K1 < 0:
            raise ValueError("K1 must be positive")
        if K2 < 0:
            raise ValueError("K2 must be positive")
        if sigma < 0:
            raise ValueError("sigma must be positive")
        use_sample_covariance = kwargs.pop('use_sample_covariance', True)
    
        if gaussian_weights:
            # Set to give an 11-tap filter with the default sigma of 1.5 to match
            # Wang et. al. 2004.
            truncate = 3.5
    
        if win_size is None:
            if gaussian_weights:
                # set win_size used by crop to match the filter size
                r = int(truncate * sigma + 0.5)  # radius as in ndimage
                win_size = 2 * r + 1
            else:
                win_size = 7   # backwards compatibility
    
        if np.any((np.asarray(im1.shape) - win_size) < 0):
            raise ValueError(
                "win_size exceeds image extent.  If the input is a multichannel "
                "(color) image, set multichannel=True.")
    
        if not (win_size % 2 == 1):
            raise ValueError('Window size must be odd.')
    
        if data_range is None:
            if im1.dtype != im2.dtype:
                warn("Inputs have mismatched dtype.  Setting data_range based on "
                     "im1.dtype.", stacklevel=2)
            dmin, dmax = dtype_range[im1.dtype.type]
            data_range = dmax - dmin
    
        ndim = im1.ndim
    
        if gaussian_weights:
            filter_func = gaussian_filter
            filter_args = {'sigma': sigma, 'truncate': truncate}
        else:
            filter_func = uniform_filter
            filter_args = {'size': win_size}
    
        # ndimage filters need floating point data
        im1 = im1.astype(np.float64)
        im2 = im2.astype(np.float64)
    
        NP = win_size ** ndim
    
        # filter has already normalized by NP
        if use_sample_covariance:
            cov_norm = NP / (NP - 1)  # sample covariance
        else:
            cov_norm = 1.0  # population covariance to match Wang et. al. 2004
    
        # compute (weighted) means
        ux = filter_func(im1, **filter_args)
        uy = filter_func(im2, **filter_args)
    
        # compute (weighted) variances and covariances
        uxx = filter_func(im1 * im1, **filter_args)
        uyy = filter_func(im2 * im2, **filter_args)
        uxy = filter_func(im1 * im2, **filter_args)
        vx = cov_norm * (uxx - ux * ux)
        vy = cov_norm * (uyy - uy * uy)
        vxy = cov_norm * (uxy - ux * uy)
    
        R = data_range
        C1 = (K1 * R) ** 2
        C2 = (K2 * R) ** 2
    
        A1, A2, B1, B2 = ((2 * ux * uy + C1,
                           2 * vxy + C2,
                           ux ** 2 + uy ** 2 + C1,
                           vx + vy + C2))
        D = B1 * B2
        S = (A1 * A2) / D
    
        # to avoid edge effects will ignore filter radius strip around edges
        pad = (win_size - 1) // 2
    
        # compute (weighted) mean of ssim
        mssim = crop(S, pad).mean()
    
        if gradient:
            # The following is Eqs. 7-8 of Avanaki 2009.
            grad = filter_func(A1 / D, **filter_args) * im1
            grad += filter_func(-S / B2, **filter_args) * im2
            grad += filter_func((ux * (A2 - A1) - uy * (B2 - B1) * S) / D,
                                **filter_args)
            grad *= (2 / im1.size)
    
            if full:
                return mssim, grad, S
            else:
                return mssim, grad
        else:
            if full:
                return mssim, S
            else:
                return mssim
    
    js