当前位置 主页 > 网站技术 > 代码类 > 最大化 缩小

    Pytorch 实现focal

    栏目:代码类 时间:2020-01-14 15:09

    我就废话不多说了,直接上代码吧!

    import numpy as np
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
     
     
    # 支持多分类和二分类
    class FocalLoss(nn.Module):
      """
      This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in
      'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)'
        Focal_Loss= -1*alpha*(1-pt)^gamma*log(pt)
      :param num_class:
      :param alpha: (tensor) 3D or 4D the scalar factor for this criterion
      :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more
              focus on hard misclassified example
      :param smooth: (float,double) smooth value when cross entropy
      :param balance_index: (int) balance class index, should be specific when alpha is float
      :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.
      """
     
      def __init__(self, num_class, alpha=None, gamma=2, balance_index=-1, smooth=None, size_average=True):
        super(FocalLoss, self).__init__()
        self.num_class = num_class
        self.alpha = alpha
        self.gamma = gamma
        self.smooth = smooth
        self.size_average = size_average
     
        if self.alpha is None:
          self.alpha = torch.ones(self.num_class, 1)
        elif isinstance(self.alpha, (list, np.ndarray)):
          assert len(self.alpha) == self.num_class
          self.alpha = torch.FloatTensor(alpha).view(self.num_class, 1)
          self.alpha = self.alpha / self.alpha.sum()
        elif isinstance(self.alpha, float):
          alpha = torch.ones(self.num_class, 1)
          alpha = alpha * (1 - self.alpha)
          alpha[balance_index] = self.alpha
          self.alpha = alpha
        else:
          raise TypeError('Not support alpha type')
     
        if self.smooth is not None:
          if self.smooth < 0 or self.smooth > 1.0:
            raise ValueError('smooth value should be in [0,1]')
     
      def forward(self, input, target):
        logit = F.softmax(input, dim=1)
     
        if logit.dim() > 2:
          # N,C,d1,d2 -> N,C,m (m=d1*d2*...)
          logit = logit.view(logit.size(0), logit.size(1), -1)
          logit = logit.permute(0, 2, 1).contiguous()
          logit = logit.view(-1, logit.size(-1))
        target = target.view(-1, 1)
     
        # N = input.size(0)
        # alpha = torch.ones(N, self.num_class)
        # alpha = alpha * (1 - self.alpha)
        # alpha = alpha.scatter_(1, target.long(), self.alpha)
        epsilon = 1e-10
        alpha = self.alpha
        if alpha.device != input.device:
          alpha = alpha.to(input.device)
     
        idx = target.cpu().long()
        one_hot_key = torch.FloatTensor(target.size(0), self.num_class).zero_()
        one_hot_key = one_hot_key.scatter_(1, idx, 1)
        if one_hot_key.device != logit.device:
          one_hot_key = one_hot_key.to(logit.device)
     
        if self.smooth:
          one_hot_key = torch.clamp(
            one_hot_key, self.smooth, 1.0 - self.smooth)
        pt = (one_hot_key * logit).sum(1) + epsilon
        logpt = pt.log()
     
        gamma = self.gamma
     
        alpha = alpha[idx]
        loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt
     
        if self.size_average:
          loss = loss.mean()
        else:
          loss = loss.sum()
        return loss
     
     
     
    class BCEFocalLoss(torch.nn.Module):
      """
      二分类的Focalloss alpha 固定
      """
      def __init__(self, gamma=2, alpha=0.25, reduction='elementwise_mean'):
        super().__init__()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = reduction
     
      def forward(self, _input, target):
        pt = torch.sigmoid(_input)
        alpha = self.alpha
        loss = - alpha * (1 - pt) ** self.gamma * target * torch.log(pt) - \
            (1 - alpha) * pt ** self.gamma * (1 - target) * torch.log(1 - pt)
        if self.reduction == 'elementwise_mean':
          loss = torch.mean(loss)
        elif self.reduction == 'sum':
          loss = torch.sum(loss)
        return loss
     
    
    
    下一篇:没有了